
ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

1

SAFIS Unified API

Overview ... 2

USER_PERMITS - retrieve a list of permits for the user .. 6

TRIPS_UPLOAD - send a set of trips rows to safis .. 8

TRIPS_UPLOAD_ERRORS - fetch a list of errors from trip rows that did not load .. 12

NEG_TRIPS_UPLOAD - send a set of negative trip reports to safis ... 13

NEG_TRIPS_UPLOAD_ERRORS - fetch a list of errors from negative reports that didn’t load ... 15

LOOKUP_LIST - fetch a set of rows for a specified lookup table ... 16

LOOKUP_LIST_DATE_CHANGED - fetch the last date a specified lookup table was changed .. 19

TRIP_LOCATIONS - send a set of trip location data rows to safis ... 20

PERMIT_COMPLIANCE - checks the current compliance status of a dealer permit ... 21

REPORTS_UPLOAD - send a set of rows to safis .. 22

REPORTS_UPLOAD_ERRORS - fetch a list of errors from rows that did not load ... 25

PERMIT_ENDORSEMENTS - fetch a list of endorsements for a given a partner ... 26

NEG_REPORTS_UPLOAD - send a set of negative dealer reports to safis ... 28

NEG_REPORTS_UPLOAD_ERRORS - fetch a list of errors from negative dealer reports that didn’t load 30

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

2

Overview
This API is used by remote applications to communicate with the SAFIS backend database server. It is not intended for
any other purpose, for example it does not supply a web-page interface.

This document is intended as a programmer’s reference manual. It is used by both application developers who build a
front-end, and the Oracle PL/SQL programmers who maintain this API back-end. Using it assumes you are already
familiar with the upload data but do not need any understanding of underlying Oracle technology.

Data is passed in in JSON format, and returned the same way.

A remote application using this API can be either web based, or a mobile application in an embedded device or a phone,
so we choose to use the term “device” to refer to the remote.

COMMAND MECHANISM
This API breaks the interaction between device and server into "commands". The device sends a command to the server
and gets back a status message, and possibly some data in a pre-specified format. This response is formatted as a JSON
object. The API uses a common format for this described in detail later.

All of these commands are detailed, with examples, later in this document.

The interaction mechanism for all commands is the same, as follows:

• The mobile app submits a page to a URL
• The domain-name, TCP-port-number and base-URL are all pre-defined. The connection between web and oracle

is supplied by an oracle restful service.
• The specific command is added to the base URL (see examples below)
• The “payload” of the request is passed as a the body of the http POST request using the JSON object format.
• The database will return the results formatted as a JSON object.
• Each specific command will have its own result-object-format (see below)
• The result will always contain a STATUS
• No data found will result in returning an empty array, i.e. no data rows but there will be a “row” object. So the

returned row-array length will be zero.
• All errors will return a STATUS format, this format will be shared by all commands. It will include an error code

and a text description.
• The result is a JSON object. Note that this is NOT a valid piece of html, there is no markup, so it will not display

correctly in a browser window.

BASE URL
For test and production these will be:

• protocol: https
• domain & base URL:

o test - “safis.accsp.org:8443/safis_test/safist/”
o prod - “safis.accsp.org:8443/safis_prod/safis_prod/"

• Command: The command is added to the base-url separated with a slash. All commands are implemented as a
procedure in a single package called “API”.

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

3

• Parameters: for an http POST operation these are all embedded in the body of the http request as a JSON
object.

REQUIRED PARAMETERS

All commands require basic HTTP authentication. All commands requesting or receiving confidential data will supply a an
API key along with the username and password of the end-user. Access to non-user specific data, like the gears for a
given partner, only requires an API. The format for HTTP Basic Authentication is as follows.

Confidential-user-specific data

Username: my_user_name@my_api_key

Password: my_password

Non-confidential non-user specific data

Username: @my_api_key

Password: <<Leave it blank>>

The use of basic authentication makes the API truly stateless and therefore each transaction request is self-contained
and there are no sessions to track. Also there are no user login and user logout function as these are unnecessary.

ALL parameters are sent to the server in their prescribed JSON format. The order does not matter.

JavaScript and JSON
The API is designed to be callable from a JavaScript application, usually using the jQuery library.

All responses are a single JSON object, this encapsulates a status code and description and a set of data rows.

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

4

Example JSON call

To make the call from a JavaScript function using JQuery a typical call would look like this:

JavaScript

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.1.1/jquery.min.js"></script>

<script>

function callSomething(){

 var mydata = JSON.stringify({"p_usertype": "FISHER"});
 var my_user = "username@myapikey";
 var my_pass = "password";

 $.ajax (
 { url: "https://safis.accsp.org:8443/safis_test/safist/user_permits",
 data: mydata,
 async: true,
 dataType: "json",
 contentType: "application/json; charset=utf-8",
 type: "POST",
 headers: {'Authorization': 'Basic ' + window.btoa(my_user + ':' + my_pass)
 },
 success: function(data,textStatus,jqXHR){
 console.log("you got in");
 },
 error: function(jqXHR,textStatus,errorThrown) {
 console.log("you got 99 problems:" + JSON.stringify(jqXHR));
 }
 }
);

 }

 </script>

</script>

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

5

Example JSON response
A typical response from this call would be:

"row": [
 {
 "license_nbr": "123",
 "license_type": "FL_COMMERCIAL",
 "permit_type": "Commercial",
 "agency": "0015",
 "in_use": "Y"
 }
],
 "OK": "User :flfisher Active Permit Count:1"
}

In this example the response it read in as a JavaScript object called “data” as an argument to a function called
“callback_success() that must exist in the same javascript page.

The JavaScript developer does not really need to know anything about the internal workings, all they need is to know
what parameters to pass the API, and what to expect back. All API calls always return a status and description, if there is
no data they return a “row” object that is empty, so the .rows.length property will be zero.

Remember to replace the username, password and API key in the example above with valid values.

The remainder of this document is a description of each command, in a standard format. Each has examples and sample
output. The description of each contains notes on when and how it is intended to be used.

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

6

USER_PERMITS - retrieve a list of permits for the user
This call retrieves a list of dealer permits for the logged in user with a valid username, password and API key.

Parameters:

 P_USERTYPE char, required, no wildcards.

Description
The user type is passed in with the P_USERTYPE parameter. The type of PERMIT being requested is sent in as
P_USERTYPE. The only current valid values of P_USERTYPE are DEALER and FISHER. As the API is expanded to
accommodate more types of users, the list will grow.

Authorization Header:

username@apikey:password

Example Request Body:
{
 "p_usertype":"DEALER"
}

Returns

row[n].DATA
 .status
 .description

Row Response
It returns a list of license numbers and corresponding agency for the user whose user type is passed in. A status of OK is
returned, with a single row that has the username and the total count of licenses being returned.

.row[n].

license_nbr the license number is the SAFIS database

for a given permit
License_type The license type assigned by the partner
permit_type The type of permit being returned. There

are 4 current possible values:
Dealer (for all dealer permits)
Commercial (Commercial Fisher permits)
For-Hire (For-Hire Fisher permits)
Operator (Operator permits for federally
permitted fishermen)

agency The issuing agency of the corresponding
license number above.

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

7

in_use A flag to indicate whether the permit is
active or not: ‘Y’ or ‘N’ values.

.status

.description

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

8

TRIPS_UPLOAD - send a set of trips rows to safis

Parameters:
P_PIN (optional) alphanumeric value. Might be required for GARFO operators.
TRIPS table of "trips" records (see description below)

Description:
The calling app will compose a table of trip records to upload, note that since they are submitted as the body of an http
POST request they are all char data even if the underlying datatype is date or number.

The data values are submitted as a JSON array of trip objects each containing a nested array of 1 or more efforts and
each effort optionally containing an array of 0 or more catch objects.

Below is a list of the valid columns expected to make a complete row. are:

Trip level information

CF_LICENSE_NBR
ISS_AGENCY
TRIP_TYPE
SUPPLIER_TRIP_ID
PORT
STATE
COAST_GUARD_NBR
STATE_REG_NBR
TRIP_START_DATE
TRIP_START_TIME
TRIP_END_DATE

TRIP_END_TIME
NUM_CREW
NUM_ANGLERS
VTR_NUMBER
VESSEL_PERMIT
SUB_TRIP_TYPE
REPORTING_SOURCE
FUEL_USED
FUEL_PRICE
CHARTER_FEE

Effort level information

DISTANCE
IN_STATE
AREA_CODE
SUB_AREA_CODE
LOCAL_AREA_CODE
LATITUDE
LONGITUDE
GEAR
LMA
GEAR_QUANTITY

GEAR_SETS
FISHING_HOURS
HOURS_DAYS
TOTAL_GEAR
GEAR_SIZE
MESH_RING_LENGTH
MESH_RING_WIDTH
STRETCH_SIZE
TARGET_SPECIES
AVG_DEPTH

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

9

Catch level information

SPECIES_ITIS
DISPOSITION
MARKET_CODE
GRADE_CODE
UNIT_OF_MEASURE

SALE_DISPOSITION_FLAG
DEALER_LICENSE_NBR
DATE_SOLD
REPORTED_QUANTITY
PRICE

DEA_ISS_AGENCY
CATCH_SOURCE
CATCH_LATITUDE
CATCH_LONGITUDE
SUPPLIER_CATCH_ID

This API returns an event_id to the calling application, which can be used to check the status of the upload, and once it is
finished The EVENT ID can be used to fetch any records that had errors.

Authorization Header:

username@apikey:password

Example Request Body:

{

 "p_pin": "1222",

 "trips": [{

 "supplier_trip_id": "1231231",

 "trip_start_date": "11/22/2015",

 "cf_license_nbr": "999999",

 "state": "MA",

 "efforts": [{

 "gear": "234",

 "latitude": "-70.1213",

 "distance": "1",

 "area_code": "202",

 "catches": [{

 "species": "123131",

 "quantity": "23",

 "disposition": "100",

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

10

 "grade_code": "01"

 }, {

 "species": "333333",

 "quantity": "12",

 "disposition": "050",

 "grade_code ": "23"

 }]

 }, {

 "gear": "700",

 "latitude": "-70.1212",

 "distance": "2",

 "area_code": "202"

 }]

 }]

}

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

11

Row response
 a status of OK is returned, with a single row that has same format at the UPLOAD_LIST API, but for just this one upload

.row[n].

event_id the unique job-id /event_id for this

upload assigned by the system
upload_date when the upload was received
process_date When the upload was processed. This might

be some time after the user submitted it
total_count count of the trip/effort/catch

combinations for this event_id
errorred_count count of rows that had an error of some

kind. If the value is more than 0,
TRIP_UPLOAD_ERRORS should be called to
get the details

.status

.description

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

12

TRIPS_UPLOAD_ERRORS - fetch a list of errors from trip rows that did not load

Parameters:

P_EVENT_ID id from previous upload_put or upload_list command

Description:
Fetch any errors in the records from this event id. Returned as a JSON encoded object. If no rows had errors there will be
no data, and status record will indicate zero errors

Authorization Header:

username@apikey:password

Example Request Body:
{
 "p_event_id":"54321"
}

Rows response
If there are no errors a status response of OK is returned, with a no rows. In this case the .rows.length property is zero.

The format returned is has 3 rows with addition of an ERR_DESC field at the start. The first row is used to hold the
explanation of what is wrong with the record. The 2nd row can either be the supplier trip, effort or catch id whichever is
appropriate and helps reference the original row passed by trips_upload. Event_id is the event id number given by
trips_upload identifying the upload.

 row[n].ERR_DESC
SUPPLIER_CATCH_ID (if applicable)
SUPPLIER_EFFORT_ID (if applicable)
SUPPLIER_TRIP_ID(if applicable)
EVENT_ID

.status
.description

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

13

NEG_TRIPS_UPLOAD - send a set of negative trip reports to safis

Parameters:
NEG_TRIPS table of neg_trips records (see description below)

Description:
The calling app will compose a table of negative trip records to upload, note that since they are submitted as the body of
an http POST request they are all char data even if the underlying datatype is date or number.

The data values are submitted as a collection of rows with each value denoting the type and column number it belongs.

Below is a list of the valid columns expected to make a complete row. All fields but the end date are required:

CF_LICENSE_NBR –(valid alphanumeric field)
ISS_AGENCY – (valid alphanumeric field)
START_DATE –(MM/DD/YYYY)
END_DATE – (MM/DD/YYYY) must be empty or greater than START_DATE
SUPPLIER_ROW_ID - numerical field

This API returns an event_id to the calling application, which can be used to check the status of the upload, and once it is
finished The EVENT ID can be used to fetch any records that had errors.

Authorization Header:

username@apikey:password

Example Request Body:

{
 "neg_trips":[
 {
 "supplier_row_id":"1231231",
 "iss_agency":"0003",
 "start_date":"11/22/2015",
 "end_date":"11/22/2015",
 "cf_license_nbr":"999999"
 },
 {
 "supplier_row_id":"12312331",
 "iss_agency":"0003",
 "start_date":"11/23/2015",
 "end_date":"11/23/2015",
 "cf_license_nbr":"999999"
 }
]
}

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

14

Row response

.row[n].

event_id the unique job-id /event_id for this

upload assigned by the system
upload_date when the upload was received
process_date When the upload was processed. This might

be some time after the user submitted it
total_count count of the neg_trips for this event_id

errorred_count count of rows that had an error of some

kind. If the value is more than 0,
NEG_UPLOAD_ERRORS should be called to get
the details

.status

.description

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

15

NEG_TRIPS_UPLOAD_ERRORS - fetch a list of errors from negative reports that
didn’t load

Parameters:
P_EVENT_ID id from previous neg_upload command

Description:
Fetch any errors in the records from this event id. Returned as a JSON encoded object. If no rows had errors there will be
no data, and status record will indicate zero errors

Authorization Header:

username@apikey:password

Example Request Body:
{
 "p_event_id":"54321"
}

Rows response
If there are no errors a status response of OK is returned, with a no rows. In this case the .rows.length property is zero.

The format returned is has 3 rows with addition of an ERR_DESC field at the start. That is used to hold the explanation of
what is wrong with the record. The supplier_row_id is a row identifier that helps reference the original row passed by
neg_upload. Event_id is the event id number given by neg_upload identifying the upload.

 row[n].ERR_DESC
SUPPLIER_ROW_ID
EVENT_ID

.status
.description

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

16

LOOKUP_LIST - fetch a set of rows for a specified lookup table

Parameters:

P_PARTNER char, required, no wildcards. This is 4 character representation of the partner to be checked.

P_LISTNAME char, required, no wildcards. Name of the list being requested. More lists may be added with time. As of
this publishing, the list is

• GEARS – returns list of rows with 5 columns. (code, description, category code, category description,
lma flag, in-use flag)

• CATCH_SOURCE – returns a list of rows with 3 columns (source_code, source_description, in-use)
• DISPOSITION- returns list of rows with 5 columns. (code, description, category code, category

description, trip type, in-use flag)
• AREASFISHED – returns a list of rows with 10 columns (area_code, area_name, sub_area_code,

sub_area_name, local_area_code, local_area_name, state, area_display_name, waters, in-use flag)
• SPECIES - returns list of rows with 14 columns. The in_use indicator indicates whether a given row is

currently active. Value returned is ‘Y’ when active and ‘N’ when no longer active.
• TARGET_SPECIES - returns list of rows with 3 columns (species_itis, species_name, in_use). The in_use

indicator indicates whether a given row is currently active. Value returned is ‘Y’ when active and ‘N’
when no longer active.

• PARTICIPANTS– returns list of users and permits for a given partner. Each row has 3 columns. (ID, Name,
License Nbr, in-use flag). All the licenses numbers returned are implicitly associated with the requested
partner.

• VESSELS– returns list of vessels and associated permits. Each row has 7 columns. vessel id (ID), Name,
registering state (state), coast guard number, state registration number, vessel permit number
(permit), in-use flag). At this time the P_PARTNER field is ignored.

• SWIPE_CARDS– returns list of swipe cards for a given partner. Each row has 3 columns. (card number,
License Nbr, in-use flag). All the licenses numbers returned are implicitly associated with the requested
partner.

P_LASTDATE (optional) changes made since a given date. Format is MM/DD/YYYY hh24:mi:ss. So a representation of
Dec 27th 2010 2:45p.m. would be given as 12/27/2010 14:45:00 While optional, the p_lastdate is highly recommended
to increase performance since it only returns a smaller list when a minimum date is used.

P_LISTTYPE (optional) char, no wildcards. This specifies the list being requested. Allowed values are EDR, ETRIP,
ETRIPFORHIRE and ETRIPCOMMERCIAL. If no values is provided, ETRIPCOMMERCIAL is used as the default.

Authorization Header:

@apikey

Example Request Body:
{
 "p_partner":"0023",
 "p_listname":"GEARS",
 "p_listtype":"EDR",
 "p_lastdate":"12/27/2010 14:45:00 "
}

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

17

Description:
Fetch a list of valid values for a specified list noted in p_listname above. Returned as a JSON encoded object. If no rows
exist, there will be no data, and status record will indicate zero errors

Rows response
If there are no errors a status response of OK is returned. The row response varies based on the type of P_LISTNAME
that was passed in.

For gears, the format is as follows.

row[n].CODE

DESCRIPTION
CATEGORY_CODE
CATEGORY_NAME
LMA
IN_USE

.status

.description

For disposition, the format is as follows.

 row[n].CODE

DESCRIPTION
CATEGORY_CODE
CATEGORY_NAME
TRIP_TYPE
IN_USE

.status

.description

For areasfished, the format is as follows.

 row[n].CODE

DESCRIPTION
CATEGORY_CODE
CATEGORY_NAME
WATERS
IN_USE

.status

.description

For catch source, the format is as follows.

row[n]. CODE

DESCRIPTION
IN_USE

.status

.description

For species, the format is as follows.

 row[n].SPECIES_QC_ID
 SPECIES_ITIS
 SPECIES_NAME

UOM
GRADE
GRADE_DESCRIPTION
MARKET
MARKET_DESCRIPTION
MIN_PRICE
MAX_PRICE
HMS
SHARK
AREA
IN_USE

.status
.description

For participants, the format is as follows.

 row[n].ID
 NAME

LICENSE_NBR

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

18

For vessels, the format is as follows.

 row[n].ID
 NAME

STATE
COAST_GUARD
STATE_REG
PERMIT
IN_USE

.status
.description

For target_species, the format is as follows.

 row[n]. SPECIES_ITIS
 SPECIES_NAME

IN_USE

.status
.description

LICENSE_TYPE
IN_USE

.status
.description

For swipe_cards, the format is as follows.

 row[n].CARD_NBR

LICENSE_NBR
IN_USE

.status
.description

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

19

LOOKUP_LIST_DATE_CHANGED - fetch the last date a specified lookup table was
changed

Parameters:

P_PARTNER char, required, no wildcards. This is 4 character representation of the partner to be checked.

P_LISTNAME name of the list whose last date change is being requested. More lists may be added with time. As of this
publishing, the list is

• GEARS
• DISPOSITION
• AREASFISHED
• SPECIES
• CATCH_SOURCE
• PARTICIPANTS
• VESSELS
• SWIPE_CARDS

Description:
Fetch the last date a specified lookup table, noted in p_listname, was changed. The value is returned in the format of
MM/DD/YYYY hh24:mi:ss. So a representation of Dec 27th 2010 2:45p.m. would be given as 12/27/2010 14:45:00
Returned as a JSON encoded object. If no date exist, there will be result will be empty

Authorization Header:

@apikey

Example Request Body:
{
 "p_partner":"0023",
 "p_listname":"GEARS"
}

Rows response
If there are no errors a status response of OK is returned.

For all valid values of P_LISTNAME, the format is as follows.

row[1].LAST_DATE

.status
.description

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

20

TRIP_LOCATIONS - send a set of trip location data rows to safis

Parameters:

P_EVENT_ID number, required. id from previous trips_upload command
P_DATA table of trip location records (see description below)

Description:
The calling app will compose a table of trip location records to upload, note that since they are submitted as the body of
an http POST request they are all char data even if the underlying datatype is date or number.

The data values are submitted as a collection of rows with each value denoting the type and column number it belongs.

Below is a list of the valid columns expected to make a complete row. are:

SUPPLIER_TRIP_ID
LATITUDE
LONGITUDE
TIMESTAMP

The timestamp format is YYYYMMDDhh24miss e.g. 20141225131755 for Dec 25th 2014 at 1:17:55p.m. This API call
fetches the body of the request and loads the records into a table.

It returns an event_id to the calling application, which can be used as a reference for these records.

Authorization Header:

username@apikey:password

Example Request Body:
{

 "p_event_id":"1222",

 "locations":[

 {"supplier_trip_id":"1231", "latitude":"43.31238", "longitude":"-72.11428", "timestamp":"20141225131755"},

 {"supplier_trip_id":"4231", "latitude":"43.32238", "longitude":"-72.11628", "timestamp":"20141225131845"}

] }

Row response
 a status of OK is returned, with a single row that has same format at the UPLOAD_LIST API, but for just this one upload

event_id . the unique job-id /event_id for this
upload assigned by the system

total_count count of the locations processed for the
event_id

.status

.description

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

21

PERMIT_COMPLIANCE - checks the current compliance status of a dealer permit

Parameters:
P_LICENSE_NBR alphanumeric , required. The license number of the permit number to be checked.
P_PARTNER The partner id associated with the license number given above.

Description:
The calling app will send a list of three variables above to identify the individual checking and the permit being checked.

Authorization Header:

username@apikey:password

Example Request Body:
{
 "p_license_nbr":"54321",
 "p_partner":"0023"
}

Row response
 a status of OK is also returned for a successful check.

.compliant a flag (Y or N) to identify whether a given permit is
compliant

.last_record_date the date of the last report entered into the system

.last_record_type the type of record last entered (P/N) for positive or
negative report

.non_compliance_dates A list of dates that the dealer is not compliant in the
format MM/DD/YYYY that are delimited by a semi-colon.
Ex. “09/10/2015;09/11/2015”

.status

.description

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

22

REPORTS_UPLOAD - send a set of rows to safis

Parameters:
REPORTS table of dealer report and landing records (see description below)

Description:
The calling app will compose 2 tables of dealer reports and landings associated with those reports to upload. Note that
since they are submitted as the JSON body of an http POST request they are all char data even if the underlying datatype
is date or number.

The dealer report information is submitted as a collection of rows with each value denoting the type and column
number it belongs.

Below is a list of the valid dealer report columns expected to make a complete row:

CF_LICENSE_NBR
CF_PARTNER_ID
LANDING_DATE
TIME_LANDED
TRIP_START_DATE
TRIP_START_TIME
DATE_OF_PUR
PORT
COAST_GUARD_NBR

STATE_REG_NBR
VTR_NBR
DEA_LICENSE_NBR
DEA_PARTNER_ID
OBSERVER_LOG_ID
HMS_LATE_REPORT
SUPPLIER_DR_ID
SUBMIT_METHOD

Below is a list of valid landings columns expected to make a complete row. Note that the SUPPLIER_DR_ID denotes
which dealer report it belongs.

REPORTED_QUANTITY
DOLLARS
DISPOSITION_CODE
GRADE_CODE
UNIT_MEASURE
SPECIES_ITIS
MARKET_CODE
PRICE
GEAR_CODE
GEAR_QUANTITY

TOTAL_GEAR
AREA_FISHED
SUB_AREA_FISHED
LOCAL_AREA_CODE
CATCH_SOURCE
TIME_OF_HARVEST
TIME_OF_ICING
TEMP_AT_RECEIVING
TEMP_UNIT (F or C)
ADDITIONAL_COUNT

ADDITIONAL_UNIT
HMS_FINS_ATTACHED
HMS_EXPLANATION
HMS_AREA_CODE
HMS_SALE_PRICE
FISHING_HOURS
HOURS_DAYS
SUPPLIER_LANDING_ID

This API returns an event_id to the calling application, which can be used to check the status of the upload, and once it is
finished The EVENT ID can be used to fetch any records that had errors.

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

23

Authorization Header:

username@apikey:password

Example Request Body:

{

 "reports":[

 {"supplier_dr_id":"1231231",

"state_reg_nbr":"SMUE939",

"dea_license_nbr":"773737",

 "landing_date":"11/22/2015",

 "cf_license_nbr":"999999",

 "landings":[

{ "species_itis":"172409", "reported_quantity":"234","dollars":"80.22",
"grade_code":"01","supplier_landing_id":"1202"},

{ "species_itis":"173408", "reported_quantity":"234","dollars":"80.22",
"grade_code":"01","supplier_landing_id":"1203"}

]

 }

]

}

Row response
 a status of OK is returned, with a single row that has same format at the UPLOAD_LIST API, but for just this one upload

.row[n].

event_id the unique job-id /event_id for this

upload assigned by the system
upload_date when the upload was received
process_date when the upload was processed, this might

be some time after the user submitted it
total_report_count count of the supplier_dr_id for a single

event_id

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

24

total_landing_count count of the supplier_landing_id for a
single event_id

errorred_report_count count of the reports with at least 1
error for a single event_id

errorred_landing_count count of rows that had an error of some
kind. If the value is more than 0,
UPLOAD_GET should be called to get the
details

.status

.description

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

25

REPORTS_UPLOAD_ERRORS - fetch a list of errors from rows that did not load

Parameters:
P_EVENT_ID id from previous upload_put or upload_list command

Description:
Fetch any errors in the records from this event id. Returned as a JSON encoded object. If no rows had errors there will be
no data, and status record will indicate zero errors

Authorization Header:

username@apikey:password

Example Request Body:
{
 "p_event_id":"54321"
}

Rows response
If there are no errors a status response of OK is returned, with a no rows. In this case the .rows.length property is zero.

The format returned is has 4 rows with addition of an ERR_DESC field at the start. That is used to hold the explanation
of what is wrong with the record. The supplier_landing_id and supplier_dr_id combine to form a row identifier that
helps reference the original row passed by reports_upload. Note that suppier_landing_id will be empty if the error is on
the dealer_report information.

 row[n].ERR_DESC
SUPPLIER_DR_ID
SUPPLIER_LANDING_ID
EVENT_ID

.status
.description

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

26

PERMIT_ENDORSEMENTS - fetch a list of endorsements for a given a partner

Parameters:

P_PARTNER char, required, no wildcards. This is 4 character representation of the partner to be checked.

P_LISTNAME name of the list being requested. More lists may be added with time. As of this publishing, the list is

• VESSELS_ON_LICENSE– returns list of rows with 6 columns. (vessel ID, name, coast guard #, state reg #,
license #, in use flag)

• ENDORSEMENTS_ON_LICENSE - returns list of rows with 3 columns (license_nbr, endorsement type,
in_use flag). The in_use indicator indicates whether a given e is currently active. Value returned is ‘Y’
when active and ‘N’ when no longer active.

• SPECIES_BY_ENDORSEMENT - returns list of rows with 6 columns (name, species_itis, endorsement
type, health_dept, area, in_use flag). The HEALTH_DEPT field has a value of Y or N indicating whether
this species requires the dept. of health fields. The AREA field has a value of Y or N indicating whether
the area fished is required for this species. The in_use indicator indicates whether a given row is
currently active. Value returned is ‘Y’ when active and ‘N’ when no longer active.

• SPECIES_BY_LICENSE - returns list of rows with 6 columns (name, species_itis, license_type,
health_dept, area, in_use flag). The HEALTH_DEPT field has a value of Y or N indicating whether this
species requires the dept. of health fields. The AREA field has a value of Y or N indicating whether the
area fished is required for this species. The in_use indicator indicates whether a given row is currently
active. Value returned is ‘Y’ when active and ‘N’ when no longer active.

P_LASTDATE (optional) changes made since a given date. Format is MM/DD/YYYY hh24:mi:ss. So a representation of
Dec 27th 2010 2:45p.m. would be given as 12/27/2010 14:45:00 While optional, the p_lastdate is highly recommended
to increase performance since it only returns a smaller list when a minimum date is used.

P_LICENSE (optional) filter the endorsements with a given license number. This field must be omitted to get the full list.

Description:
Fetch a list of valid values for a specified list noted in p_listname above. Returned as a JSON encoded object. If no rows
exist, there will be no data, and status record will indicate zero errors

Authorization Header:

@apikey

Example Request Body:
{
 "p_partner":"0023",
 "p_listname":"VESSELS_ON_LICENSE",
 "p_license":"123456",
 "p_lastdate":"12/27/2010 14:45:00 "
}

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

27

Rows response
If there are no errors a status response of OK is returned. The row response varies based on the type of P_LISTNAME
that was passed in.

For vessels_on_license, the format is as follows.

row[n].VESSEL_ID

NAME
COAST_GUARD
STATE_REG
LICENSE_NBR
IN_USE

.status

.description

For endorsements on license, the format is as follows.

 row[n]. LICENSE_NBR
 ENDORSEMENT_TYPE
 IN_USE

For species_by_endorsement, the format is as follows.

 row[n].ENDORSEMENT_TYPE
 SPECIES_ITIS

NAME
HEALTH_DEPT
IN_USE

.status

.description

For species_by_license, the format is as follows.

 row[n].LICENSE_TYPE
 SPECIES_ITIS

NAME
HEALTH_DEPT
IN_USE

.status

.description

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

28

NEG_REPORTS_UPLOAD - send a set of negative dealer reports to safis

Parameters:
NEG_REPORTS table of neg_reports records (see description below)

Description:
The calling app will compose a table of negative dealer report records to upload, note that since they are submitted as
the body of an http POST request they are all char data even if the underlying datatype is date or number.

The data values are submitted as a collection of rows with each value denoting the type and column number it belongs.

Below is a list of the valid columns expected to make a complete row. All fields but the end date are required:

DEA_LICENSE_NBR –(valid alphanumeric field)
ISS_AGENCY – (valid alphanumeric field)
START_DATE –(MM/DD/YYYY)
END_DATE – (MM/DD/YYYY) must be empty or greater than START_DATE
SUPPLIER_ROW_ID - numerical field

It returns an event_id to the calling application, which can be used to check the status of the upload, and once it is
finished The EVENT ID can be used to fetch any records that had errors.

Authorization Header:

username@apikey:password

Example Request Body:

{
 "neg_reports":[
 {
 "supplier_row_id":"1231231",
 "iss_agency":"0003",
 "start_date":"11/22/2015",
 "end_date":"11/22/2015",
 "dea_license_nbr":"999999"
 },
 {
 "supplier_row_id":"12312331",
 "iss_agency":"0003",
 "start_date":"11/23/2015",
 "end_date":"11/23/2015",
 "dea_license_nbr":"999999"
 }
]
}

Row response

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

29

 a status of OK is returned, with a single row that has same format at the UPLOAD_LIST API, but for just this one upload

.row[n].event_id the unique event_id for this upload assigned by the system
upload_date when the upload was processed,

 this might be some time after the user submitted it
process_date the date of processing completion
total_count count of the total reports entered for this event. Note that

date range counts as one.
errorred_count count of rows that had an error of some kind. If the value is

more than 0, NEG_REPORTS_UPLOAD_ERRRORS should be called to
get the details

.status
.description

ACCSP Confidential Programmers API Reference – 6.1 April 5th 2017

30

NEG_REPORTS_UPLOAD_ERRORS - fetch a list of errors from negative dealer
reports that didn’t load

Parameters:
P_EVENT_ID id from previous neg_upload command

Description:
Fetch any errors in the records from this event id. Returned as a JSON encoded object. If no rows had errors there will be
no data, and status record will indicate zero errors

Authorization Header:

username@apikey:password

Example Request Body:
{
 "p_event_id":"12345"
}

Rows response
If there are no errors a status response of OK is returned, with a no rows. In this case the .rows.length property is zero.

The format returned is has 3 rows with addition of an ERR_DESC field at the start. That is used to hold the explanation of
what is wrong with the record. The supplier_row_id is a row identifier that helps reference the original row passed by
neg_upload. Event_id is the event id number given by neg_upload identifying the upload.

 row[n].ERR_DESC
SUPPLIER_ROW_ID
EVENT_ID

.status
.description

	Overview
	COMMAND MECHANISM
	BASE URL
	REQUIRED PARAMETERS
	JavaScript and JSON
	Example JSON call
	Example JSON response

	USER_PERMITS - retrieve a list of permits for the user
	Description
	Returns
	Row Response

	TRIPS_UPLOAD - send a set of trips rows to safis
	Parameters:
	Description:
	Row response

	TRIPS_UPLOAD_ERRORS - fetch a list of errors from trip rows that did not load
	Parameters:
	Description:
	Rows response

	NEG_TRIPS_UPLOAD - send a set of negative trip reports to safis
	Parameters:
	Description:
	Row response

	NEG_TRIPS_UPLOAD_ERRORS - fetch a list of errors from negative reports that didn’t load
	Parameters:
	Description:
	Rows response

	LOOKUP_LIST - fetch a set of rows for a specified lookup table
	Parameters:
	Rows response

	LOOKUP_LIST_DATE_CHANGED - fetch the last date a specified lookup table was changed
	Parameters:
	Description:
	Rows response

	TRIP_LOCATIONS - send a set of trip location data rows to safis
	Parameters:
	Description:
	Row response

	PERMIT_COMPLIANCE - checks the current compliance status of a dealer permit
	Parameters:
	Description:
	Row response

	REPORTS_UPLOAD - send a set of rows to safis
	Parameters:
	Description:
	Row response

	REPORTS_UPLOAD_ERRORS - fetch a list of errors from rows that did not load
	Parameters:
	Description:
	Rows response

	PERMIT_ENDORSEMENTS - fetch a list of endorsements for a given a partner
	Parameters:
	Description:
	Rows response

	NEG_REPORTS_UPLOAD - send a set of negative dealer reports to safis
	Parameters:
	Description:
	Row response

	NEG_REPORTS_UPLOAD_ERRORS - fetch a list of errors from negative dealer reports that didn’t load
	Parameters:
	Description:
	Rows response

